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Abstract. We reason in support of the universality of quantum spectral fluctuations in chaotic systems,
starting from the pioneering work of Sieber and Richter who expressed the spectral form factor in terms of
pairs of periodic orbits with self-crossings and avoided crossings. Dropping the restriction to uniformly hy-
perbolic dynamics, we show that for general hyperbolic two-freedom systems with time-reversal invariance
the spectral form factor is faithful to random-matrix theory, up to quadratic order in time. We relate the
action difference within the contributing pairs of orbits to properties of stable and unstable manifolds. In
studying the effects of conjugate points, we show that almost self-retracing orbit loops do not contribute
to the form factor. Our findings are substantiated by numerical evidence for the concrete example of two
billiard systems.

PACS. 05.45.Mt Quantum chaos; semiclassical methods – 03.65.Sq Semiclassical theories and applications

1 Introduction

One of the fundamental questions of quantum chaos is
why, in the semiclassical limit, almost all classically hy-
perbolic systems display universal spectral fluctuations,
only depending on their symmetries. This universality was
initially conjectured by Bohigas et al. [1] and is by now
supported by overwhelming experimental and numerical
evidence [2,3]. Examples for experimental tests range from
nuclear physics and atomic and molecular spectroscopy to
classical microwave billiards studied in the limit of large
wavenumbers. Even though random-matrix theory pro-
vides a phenomenological description of these universal
features, a derivation from first principles is still lack-
ing. Also in other areas of research, such as mesoscopic
quantum transport, the reasons for the amazing success of
random-matrix theory are only beginning to emerge [4].
To tackle this long-lasting challenge, several approaches
have been suggested such as parametric level dynamics [2]
or an extension of field theoretical methods used in the
theory of disordered systems [5,6].

In the present paper, following an ansatz pioneered
in [7–9], we relate quantum spectral statistics to the prop-
erties of classical periodic orbits. We treat the spectral
form factor (i.e. the Fourier transform of the spectral two-
point correlation function). According to random-matrix
theory, it has the following form for systems belonging
to the orthogonal universality class (i.e. hyperbolic sys-
tems with no symmetries except a time-reversal symmetry
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whose time-reversal operator squares to unity)

K(τ) = 2τ − τ ln(1 + 2τ) = 2τ − 2τ2 + 2τ3 . . . (1)

Here, τ = T
TH

is the time measured in units of the
Heisenberg time TH(E) = 2π�ρ̄(E) (where ρ̄(E) is the av-
erage level density), and we are only considering the range
0 < τ < 1

2 . Using Gutzwiller’s trace formula for the level
density [10], the form factor can be expressed as a double
sum over periodic orbits γ, γ′

K(τ) =
1

TH

〈 ∑
γ,γ′

AγAγ′ exp
(

i
�
(Sγ − Sγ′)

− i(µγ − µγ′)
π

2

)
δ

(
T − Tγ + Tγ′

2

) 〉
E,T

, (2)

where Aγ is the classical stability amplitude, Tγ the pe-
riod and µγ the Maslov index of the periodic orbit γ; the
brackets 〈. . .〉E,T denote averaging over the energy and
over a small time window. Note that as the semiclassical
limit is taken for fixed τ , the period of the contributing
orbits tends to infinity proportionally to TH . The crucial
point is that the summand connected to each pair of orbits
has a phase given by their action difference divided by �.
Thus in the semiclassical limit, the phases will be ran-
domly distributed and most terms will interfere destruc-
tively. A contribution to the form factor can only arise
from pairs of orbits whose action difference is of the order
of Planck’s constant. Thus, there is a deep relation be-
tween correlations among the actions of classical periodic
orbits and correlations in quantum spectra [8].



306 The European Physical Journal B

First success in this direction was reported by Berry [7],
who derived the leading term 2τ in the series expansion
of K(τ) from pairs of orbits which are either identical or
related by time reversal (diagonal approximation). Start-
ing with results by Argaman et al. [8], the search was on
to identify further families of orbit pairs with similar ac-
tion, expected to give rise to higher-order contributions to
the form factor (see [11] and references therein). A break-
through was recently achieved by Sieber and Richter, who
proposed orbit pairs in which one of the orbits contains
a self-crossing in configuration-space with a small angle
ε [9]. Its partner narrowly avoids that crossing, approxi-
mately following one loop of the first orbit, and following
the other loop in the time-reversed sense (cp. Fig. 1). The
action difference between the two is quadratic in ε and
thus can be arbitrarily small. Since it is required that the
time reversal of a classical orbit loop is again a classical or-
bit loop, such pairs of orbits can only exist in time-reversal
invariant systems. Using these pairs, Sieber and Richter
derived the leading off-diagonal contribution −2τ2 to the
form factor for a uniformly hyperbolic billiard (a billiard
where all orbits have the same Lyapunov exponent λ), the
so-called Hadamard-Gutzwiller model, i.e. geodesic mo-
tion on a tesselated surface of constant negative curvature
of genus 2. They summed over the contributions of all
these pairs using two ingredients, the action difference be-
tween the two partners and the density of crossing angles.
The τ2-term arises due to a correction to the latter of
next-to-leading order in the orbit period. It stems from
the fact that in the Hadamard-Gutzwiller model, a loop
with a small crossing angle must have a minimal traver-
sal time tmin(ε) = − 2

λ log cε. In their derivation these au-
thors made use of several system-specific niceties of the
Hadamard-Gutzwiller model, which the form factor, being
universal, cannot depend on. First steps towards an exten-
sion to other systems have been taken for quantum graphs
in [12,13], where both the τ2- and the τ3-contribution to
the spectral form factor were shown to originate from sim-
ilar orbit pairs.

In the present paper, extending results we first pre-
sented in [14,15], we go beyond these idealized models and
derive the leading off-diagonal contribution to the form
factor for general two-dimensional hyperbolic systems
with a Hamiltonian of the form H(Q,P) = P2

2m + V (Q).
The main novel ideas needed to establish this universality
are:

(i) The relation between the partner orbits can be for-
mulated elegantly in terms of the invariant manifolds,
which also determine the action difference within the
orbit pair.

(ii) The Maslov indices of the partner orbits can be shown
to coincide.

(iii) In general systems, a logarithmic correction to the
angle distribution arises involving the Lyapunov ex-
ponent of the system (as defined below).

(iv) In systems with conjugate points, the one-to-one
correspondence between crossings and orbit pairs is
broken. There are crossings related to almost self-
retracing loops without an associated partner orbit,

Fig. 1. Sketch of a Sieber-Richter pair in configuration space.
Phase-space points are denoted by arrows starting at the
corresponding configuration-space location, and momentum is
indicated by the direction of the arrow. Depicted are the phase-
space points of the two traversals of the crossing and two phase-
space points of the partner orbit as defined in the text. The
Poincaré sections orthogonal to X′

1 and X′
2 and two points

half-way through the loops divide the orbit into four parts a,
b, c, and d.

and “braids” of crossings with a common partner.
We show how to overcome these problems and re-
veal the distribution of crossings for which a partner
orbit does exist as universal even in the presence of
conjugate points.

(v) The universal contribution to the form factor follows
from a relation between the invariant manifolds and
the Lyapunov exponent. Our findings are substanti-
ated by numerical results for two billiard systems.

Note that the use of crossings in configuration space
constitutes no conceptual problem e.g. concerning canon-
ical invariance, as what we are using is in fact the geom-
etry of the invariant manifolds. As pointed out in [16],
it appears natural to work in configuration space since
it is singled out by the conventional time-reversal opera-
tor. Interestingly, the results of [16] imply that our con-
siderations immediately carry over to systems with non-
conventional time-reversal invariance, as long as they can
be canonically transformed to a Hamiltonian of the above
structure. An alternative approach avoiding a projection
to configuration space will be presented in [17,18].

This paper is organized as follows. We first deter-
mine the action difference between the two partner or-
bits (Sect. 2) and show that their Maslov indices coincide
(Sect. 3). In Section 4 we investigate the statistics of cross-
ings angles, phase-space locations and loop times in sys-
tems without conjugate points. In Section 5 we generalize
our findings to systems with conjugate points and clar-
ify the relation between crossings and orbit pairs in such
systems. Finally, we will derive the τ2-contribution to the
form factor in Section 6.

2 Action difference

A long periodic orbit typically has a huge number of self-
crossings in configuration space. For a given small-angle
self-crossing, we will show that a related orbit with sim-
ilar action exists, provided the two orbit loops separated
by the crossing are long1. This partner orbit is obtained
from the initial orbit by time reversal of one loop and

1 Certain subtle issues concerning the existence and unique-
ness of that partner will be dealt with in Section 6.
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a local deformation close to the crossing. Further away,
the deviation between the initial orbit (respectively its
time-reversed) and the partner decays exponentially. As
proposed in [16], the relation between these two orbits
can be expressed elegantly in terms of stable and unsta-
ble manifolds. The main advantage of this method is that
the action difference within the orbit pair can be shown
to depend only on the crossing angle and the local behav-
ior of the invariant manifolds at the phase-space location
of the crossing. The complicated dependence on stability
matrices of the two loops derived in [9] is thus drastically
simplified in the limit of long loops.

Recall that two phase-space points lie on each other’s
stable (unstable) manifold if trajectories starting from
these points come infinitely close for t → ∞ (t → −∞).
For two-freedom systems, the local behavior of these
invariant manifolds at a phase-space point X can be
characterized by just one number, called “direction” or
“curvature” of the given manifold [20,21]. This direc-
tion is defined as the ratio between the momentum and
configuration-space components p and q of an infinitesimal
phase-space deflection along the stable (unstable) mani-
fold

Bs,u(X) =
∂p

∂q

∣∣∣∣
s,u

(X); (3)

here, the deflection is assumed orthogonal to the trajec-
tory passing through X. Note that time reversal T ex-
changes stable and unstable manifolds and changes the
sign of their directions such that Bs(X) = −Bu(T X).

Now, our condition of a local deformation can be for-
mulated in terms of the invariant manifolds. Let X1 and
X2 denote the phase-space points corresponding to the
two traversals of the crossing. On the partner orbit with
time-reversed right loop, we single out a phase-space point
X′

1, located where the perpendicular from the crossing
hits that orbit (see Fig. 1). X′

1 must approximately lie on
the stable manifold of X1 (and vice versa), as trajecto-
ries starting there approach for a long time as t → ∞.
Conversely, X′

1 must lie on the unstable manifold of the
time reversal of X2. To determine X′

1, it is convenient
to work in a Poincaré section Σ defined by the above
perpendicular. The coordinates of a phase-space point
X = (Q,P) in that section will be denoted by x = (q, p).
Since x′

1 − x1 = (q′1 − q1, p
′
1 − p1) must be stable and

x′
1 −T x2 = (q′1 − q2, p

′
1 + p2) unstable, we obtain the fol-

lowing system of linear equations in q′1, p′1 involving the
directions of the invariant manifolds

p′1 − p1 = Bs(X′
1)(q

′
1 − q1)

p′1 + p2 = Bu(X′
1)(q

′
1 − q2). (4)

Furthermore, we know that X1 and X2 coincide in con-
figuration space, i.e. also q1 = q2, and that the difference
in orthogonal momenta of X1 and T X2 is related to the
crossing angle by p1+p2 = −|P1|ε. Using this, the solution
to (4) can be written as

q′1 − q1,2 = − |P1|ε
Bu(X′

1) − Bs(X′
1)

, (5)

p′1 follows trivially.
One can now expand the action of the orbit containing

the crossing around that of its partner avoiding it. As
the action of a periodic orbit is stationary, the first-order
term vanishes. We restrict ourselves to the quadratic
order in q′1 − q1,2. We first consider the “upper” side
of the crossing, i.e. the orbit parts a and b separated
by Σ and two points half-way through the two loops as
shown in Figure 1. The second derivatives of their action
can be related to the stable and unstable directions.
For example, Sa(Q′

1,Q
′
L) generates the motion from

the configuration-space point Q′
1 on Σ to the point

Q′
L half-way through the left loop, thus P′

1 = − ∂Sa

∂Q′
1

and therefore ∂2Sa

∂q′2
1

= −∂p′
1

∂q′
1
. These derivatives are taken

for constant Q′
L, and can in the limit of long loops be

approximated by derivatives along the stable manifold.
We thus have

∂2Sa

∂q′1
2 = − ∂p′1

∂q′1

∣∣∣∣
s

(X′
1) = −Bs(X′

1), (6)

and analogously

∂2Sb

∂q′1
2 =

∂p′1
∂q′1

∣∣∣∣
u

(X′
1) = Bu(X′

1). (7)

The same reasoning can be repeated for the “lower” side
of the crossing in a slightly different Poincaré section or-
thogonal to the “lower” part of the orbit in a phase-space
point X′

2 (see Fig. 1).
A Taylor expansion now shows that avoiding a crossing

with angle ε located at X reduces the action by

∆S =
P2

1ε
2

2(Bu(X′
1) − Bs(X′

1))
+

P2
1ε

2

2(Bu(X′
2) − Bs(X′

2))
· (8)

For small angles, we can neglect the difference of the
stable resp. unstable directions at X1, X′

1, T X2, and
T X′

2 (which we will denote collectively by X), as long as
Bs and Bu are sufficiently smooth close to the crossing
location. This condition is usually fulfilled unless e.g.
immediately after the crossing, the different branches of
one loop enclose a singularity of the flow. Apart from
these exceptional cases, (8) simplifies to

∆S(X, ε) =
P2ε2

Bu(X) − Bs(X)
· (9)

This may also be negative, meaning that the action can
also be increased by avoiding the crossing. Using that
Bs(X) = −Bu(T X) one easily sees that this result is in-
variant under time reversal of X, as it should be, since
we must obtain the same action difference if we insert for
X the other, almost time-reversed traversal of the cross-
ing. Assuringly, the action difference in the Hadamard-
Gutzwiller model follows from (9) as a special case. In
that model we have Bu(X) = −Bs(X) = mλ (where m is
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mass) for all phase-space points X, and thus ∆S = P2ε2

2mλ
in accordance with [9].

3 Maslov index

The contribution of a pair of orbits to the form factor is
determined not only by the difference of their actions, but
also by the difference of their Maslov indices. We want
to show that for Sieber-Richter pairs of orbits, at least
in the limit of small angles the latter vanishes. Note that
this was trivial in the Hadamard-Gutzwiller model, where
all Maslov indices are zero. We work in the framework of
a beautiful geometric interpretation of the Maslov index
of a periodic orbit due to Creagh et al. [2,22], again in
a (in the present context two-dimensional) Poincaré sec-
tion orthogonal to the orbit. Here, the invariant manifolds
locally have the form of lines through the origin which ro-
tate around the origin as we move along the orbit. The
Maslov index now equals the net number of clockwise half-
rotations of the stable or, equivalently, the unstable man-
ifold (i.e. the difference of the numbers of clockwise and
counter-clockwise half-rotations).

For our argument, we also define the Maslov index of
a finite non-periodic orbit such as an orbit loop in Sieber-
Richter theory. It is the sum of the net rotation angles
of the stable and the unstable manifold around the ori-
gin, divided by 2π. Even though not canonically invari-
ant, non-integer, and depending on the units chosen in
the Poincaré section, this definition is very useful because
it makes the Maslov index of a loop invariant under time
reversal. Obviously, time reversal leaves the absolute value
of a rotation angle invariant. The same is true for the sense
of rotation, since time reversal inverts the motion on the
Poincaré section in direction (turning a clockwise rota-
tion into a counter-clockwise one and vice versa), but also
changes the sign of the momentum (turning the sense of
rotation back to the original one)2. An alternative ana-
lytic proof can be found in [23]. In addition, time reversal
exchanges the stable and unstable manifolds, which also
cannot affect the sum of their rotation angles. Reassur-
ingly, this newly defined Maslov index coincides with the
usual one in case the orbit happens to be periodic. More-
over, it is additive for subsequent orbit pieces and smooth
under small deformations of the orbit as long as the in-
variant manifolds are smooth.

We can now show that the Maslov indices of the two
partner orbits coincide. They can be expressed as sums
over the Maslov indices of the two loops. Due to additivity
and time-reversal invariance of the loop Maslov indices,
formal time reversal of one loop leaves the Maslov index
of the orbit invariant. In the limit of small crossing angles,
any subsequent local deformation as described in Section 2
can at most lead to a small change of the Maslov indices of
the loops. Since, however, the Maslov index of a periodic
orbit is an integer quantity, the Maslov indices of the two
partners have to coincide.

2 Note that time reversal also inverts the directions of both
coordinate axes in the Poincaré section, but this has no impact
on the sense of rotation.

4 Crossings in systems without conjugate
points

We have seen that in non-uniformly hyperbolic systems
the action difference within a Sieber-Richter pair of orbits
depends both on the angle and on the phase-space location
of the crossing. Anticipating that like in the Hadamard-
Gutzwiller model, also the traversal times of the loops
play a crucial role, we investigate the density p(X, ε, t|T )
of loops with crossing angle ε, time t, and initial phase-
space point X (the latter being one of the two traversal
points of the crossing) in a periodic orbit of period T .
This density is normalized in such a way that integration
over all possible values of X, ε, and t yields the average
number of loops, and thus twice the average number of
crossings, in a periodic orbit of period close to T . To make
our exposition more clear, in the present Section we will
still limit ourselves to systems without conjugate points;
our findings will be generalized to systems with conjugate
points in Section 5.

From the ergodicity of the flow we can, along the lines
of [9], deduce the following approximation

perg(X, ε, t|T ) =
2P2

m|Ω|2 T sin ε, (10)

where |Ω| is the volume of the energy shell. The propor-
tionality to sin ε reflects the fact that orthogonal parts of
the orbit intersect more frequently than almost parallel or
antiparallel ones.

However, like in the Hadamard-Gutzwiller model there
is a correction to that ergodic prediction because loop
times below a certain angle and location dependent mini-
mum are impossible. We will first give a general argument
why this minimal loop time is generic, and later substan-
tiate our point by numerical evidence for billiards and dis-
cuss certain system-specific limitations. In systems with-
out conjugate points, two trajectories starting from the
same point in configuration space with a small opening
angle cannot gather in another point as long as the phase-
space separation between them can be approximated as
a linear function of the initial separation. For an orbit
loop to close it is thus necessary that, during half the loop
time the separation between one of its two branches and
the time-reversed of the other branch grows far enough to
make that approximation invalid. Apart from exceptional
cases to be discussed later, this typically means that their
separation must reach a classical phase-space scale of the
order of some finite fraction of the maximal phase-space
separation. If the branches enclose a small crossing angle
ε, this requires the loop to be long. Let ‖δX‖ denote the
phase-space separation between one branch of the loop
and the time-reversed of the other one in an arbitrary
norm ‖.‖ at the location of the crossing (thus ‖δX‖ ∝ ε)
and δX( t

2 ) the separation after half the loop time. As long
as the linearized approximation is applicable both are for
large t related by

‖δX( t
2 )‖

‖δX‖ ∼ e
λt
2 , (11)
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where λ is the Lyapunov exponent of the system. This
asymptotic behavior is due to the fact that long loops er-
godically explore the whole energy shell. The Lyapunov
exponent governing the asymptotic fate of a small devi-
ation δX (with non-vanishing unstable component) at a
phase-space point X coincides for almost all X, since it can
be expressed as the average of the so-called local stretch-
ing rate over an infinite trajectory starting at X [20].
Thus, in case of an ergodic flow it coincides with a phase-
space average almost everywhere (except e.g. on periodic
orbits). Note that due to Pesin’s theorem, λ also coin-
cides with the Kolmogorov-Sinai entropy [20,24]. In uni-
formly hyperbolic systems such averaging is trivial since
the local stretching rate is constant and therefore even the
Lyapunov exponents of periodic orbits coincide.

Demanding that the deviation ‖δX( t
2 )‖ reaches the

limit for a breakdown of the linear approximation just
after half the loop time, we obtain a minimal loop time of

tmin(X, ε) = − 2
λ

ln c(X)ε. (12)

Here, c(X) is constant with respect to the angle but may
depend on the phase-space point X immediately preceding
the loop. However, the exact value of c(X) will turn out to
be irrelevant for the form factor. The second loop starts
approximately at T X, thus its time must fulfill T − t >
tmin(T X, ε). Incorporating these minimal loop times in a
straight-forward way, we obtain the following density of
loops

p(X, ε, t|T ) = perg(X, ε, t|T )Θ(t − tmin(X, ε))
×Θ(T − t − tmin(T X, ε)). (13)

Integration over 0 ≤ t ≤ T yields the density of crossing
angles and phase-space locations

P (X, ε|T ) =
2P2

m|Ω|2 T (T − tmin(X, ε)

− tmin(T X, ε)) sin ε. (14)

We want to clearly point out the scope of our approx-
imation. First, the minimal loop time derived above gives
the threshold after which loops have a chance to close, but
does not predict the exact behavior of the shortest loops.
Thus in the immediate vicinity of the minimal loop time,
system specific structures appear which are not described
by (13) and (14). Second, we will see that singularities can
let the linear approximation for the separation between
the branches of a loop break down even before a typi-
cal phase-space scale is reached (as also discussed in [17]).
Thus, singularities give rise to exceptional, system-specific
crossings which may ignore the minimal loop time [14].

For our numerics, we are also interested in the statis-
tics of self-crossings of non-periodic orbits. In full analogy
to the above considerations for periodic orbits, we can
show that the density of loops with crossing angle ε, time
t, and initial phase-space point X in non-periodic orbits

Fig. 2. The desymmetrized diamond billiard (with an example
for a singularity-related crossing).

with traversal time T reads

pnp(X, ε, t|T )

=
2P2

m|Ω|2 (T − t)Θ(t − tmin(X, ε)) sin ε. (15)

Integration yields the density of crossing angles and phase-
space locations3

P np(X, ε|T ) =
P2

m|Ω|2 (T − tmin(X, ε))2 sin ε. (16)

4.1 Example: The desymmetrized diamond billiard

We will now present numerical evidence for this cross-
ing distribution for a special billiard system, the desym-
metrized diamond billiard (see Fig. 2). It can be regarded
as the empty space between four overlapping disks [25] à la
Sinai, cut into eight equal pieces. The distance between the
disks is chosen as one, and we choose their radius r = 0.541
so that its interior angles become π

2 , π
4 and π

8 . The desym-
metrized diamond billiard is non-uniformly hyperbolic and
belongs to the class of semi-dispersing billiards (i.e. it is
surrounded by a boundary which consists of locally con-
cave and straight segments). Therefore, it is free of con-
jugate points. It has a circumference C = 0.671 and an
area A = 0.0157. Santaló’s formula [26] gives its mean
free path as l̄ = πA

C = 0.0735. By averaging over the Lya-
punov exponents of random non-periodic trajectories, we
numerically obtain the Lyapunov exponent of the system
as λ = 4.31.

A few words are in order about our numerical tech-
nique. The crossing statistics is determined by averag-
ing over 2 × 107 non-periodic trajectories of length L =
10 (i.e. very long orbits compared to the typical length
scales l̄ and 1

λ ) with random initial conditions. For the del-
icate statistics of angles < π

10 , even 109 trajectories were
considered. Note that for billiards, it is useful to work in
dimensionless coordinates with mass and velocity equal
to one; then the traversal time T of each orbit equals L,
and the same holds true for the the traversal times t and
lengths l of the loops.

We now turn to our results. For small angles, the basic
idea of a minimal loop time depending logarithmitically

3 Note that in contrast to periodic orbits, for each crossing
there is only one loop, hence it is only included once in this
distribution.
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Fig. 3. Density plot of the combined distribution of loop times t and crossing angles ε in the desymmetrized diamond billiard:
a) for ε < 0.05π, b) for all angles. The density is normalized such that multiplied by sin ε dε dt, it gives the average number of
crossings in the respective intervals of the crossing angle ε and the loop time t inside one orbit of traversal time T = 10; the
resulting scale is shown in c). For small angles, we observe a threshold logarithmic in ε, as indicated by a dashed line.

on the crossing angle can be verified at a glance at Fig-
ure 3a. Here we have plotted the density of angles and
loop times (up to t = 3) of crossings occurring anywhere
on the energy shell4, and for convenience divided out the
term sin ε arising from the ergodic approximation. Suffi-
ciently far above that logarithmic threshold, marked by a
dashed line in Figure 3a, this density is almost uniform.
In agreement with (15), it decays linearly towards larger
loop time. Note that according to (12), the minimal loop
time weakly depends on the location on the energy shell
due to the factor c(X). Thus, the minimum in Figure 3a
is slightly smeared out. Below the dashed line, the density
of crossings diminishes fast before vanishing completely
inside the white region.

In addition to this expected behavior, a rich variety
of system-specific structures are seen. As announced, the
crossing density shows system-specific inhomogeneities in
the immediate vicinity of the minimal loop time. In addi-
tion, below the minimal loop time, we observe exceptional
crossings related to singularities of the flow, most impor-
tantly the tangential singularity. Namely, the linear ap-
proximation for the separation between the two branches
of a loop is already violated if one branch reflects e.g. at
the circular part of the boundary, and the other branch

4 In contrast to the following results, for this density plot it
was sufficient to only take into account 5 × 107 trajectories.

narrowly avoids the circle. In this case, the separation be-
tween the branches of the loop need not reach a typical
phase space scale for the loop to close. An example for
such exceptional loops ignoring the minimal loop time is
shown in Figure 2. However, our numerical results indicate
that their effect on the crossing distribution is minute.

At larger angles, which in the semiclassical limit give
no contribution to the form factor, further structures are
seen (cp. Fig. 3b), such as

(i) Discrete lines at ε = π corresponding to periodic or-
bits, which are nothing but loops with a “crossing an-
gle” π. They are deformed and broadened when going
to smaller angles. Thus, most loops close to the mini-
mal time are obtained by deformation of the shortest
periodic orbits.

(ii) Four families of loops which start at zero loop time,
and as shown in [14] are close to corners. One of
these families of loops involves only reflections at the
two straight-line segments of the boundary and has a
crossing angle of π

2 for all its members.

Note that most of these structures were absent in the
idealized example of the Hadamard-Gutzwiller model. In
that model, the analog of Figure 3 just consists of dis-
persionless logarithmic curves corresponding each to the
family of loops obtained by deformation of one periodic
orbit [9].
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Fig. 4. Statistics of loop times in non-periodic trajectories of traversal time T = 10 in the desymmetrized diamond billiard.
Depicted is the density of crossings with loop time t and crossing angle < εmax in a fraction of 1

8
of the energy shell for a)

εmax = π, b) εmax = 0.1π, c) εmax = 0.01π, d) εmax = 0.001π. The result is normalized such that multiplied by dt it gives
the number of such crossings in the loop time interval (t, t + dt) inside one orbit of traversal time T ; the graphs are based on
averages over 2 × 107 orbits for large angles and 109 orbits for small angles, respectively. Due to the minimal loop time, there
is a gap for small t which grows as εmax is reduced.

Further evidence for the minimal loop time is shown
in Figure 4, this time also taking into account the phase-
space dependence of the crossing statistics. We restrict
ourselves to crossings which have angles smaller than a
maximal angle εmax and take place inside a bin whose area
is 1

8 of the total energy shell, and consider the density
of their loop times t. This density must have a gap for
small t whose width is given by the minimal loop time
and thus increases logarithmitically when εmax is reduced.
Incidentally, this density of loop times can be shown to
decay linearly for large t in the case of non-periodic orbits.
Our numerical results confirm these predictions and again
reveal system-specific structures close to the minimal loop
time.

The angle density P np(X, ε|T ) (averaged over the
whole energy shell and over bins with sizes of 1

8 and 1
64 of

the energy shell) agrees with our predictions as well (cp.
Fig. 5). For sufficiently small angles, the distribution is
sinusoidal. Upon division by sin ε, in accordance with (16)
a logarithmic correction due to the minimal loop time be-
comes visible. The relative weight of that correction (seen
as the slope in the logarithmic plot in Fig. 5b) coincides
for all three samples. We thus see that indeed the cross-
ing distribution in a billiard is homogeneous on the en-
ergy shell apart from system-specific oscillations for large
ε and apart from the factor c(X). Based on the relative
weight of the logarithm, fitting yields a minimal loop time
tmin(X, ε) = − 2

λfit
ln c(X)ε where λfit = 4.31 agrees per-

fectly with the Lyapunov exponent λ.

5 Crossings in systems with conjugate points

We now want to generalize our treatment to systems with
conjugate points. In such systems, trajectories fanning out
from the same point in configuration space with a small
opening angle can focus again in a second point, then in a
third, etc. (see Fig. 6). All these points are called mutually
conjugate. We will see that conjugate points destroy the
one-to-one relation between crossings and orbit pairs, be-
cause there are (i) crossings without a partner orbit avoid-
ing the crossing and (ii) families (“braids”) of crossings
with a common partner. Both effects have a direct anal-
ogy to quantum graphs, for which the leading off-diagonal
contribution to the form factor was derived in [12] and
even the third order of the expansion was obtained [13].
The general picture emerges that a periodic orbit has one
partner for each two almost time-reversed orbit stretches
dividing the orbit into sufficiently long loops.

Even though our findings are general, we find it in-
structive to also discuss their meaning in the special case
of systems with symbolic dynamics. Here, each periodic
orbit is unambiguously defined by a string of symbols.
Each symbol in the alphabet denotes one partition of a
certain Poincaré section, and the symbol sequence of a
periodic orbit is composed of the symbols corresponding
to the partitions it traverses.

In particular, we consider the example of the cardioid
billiard, which belongs to the family of focusing bil-
liards (i.e. billiards surrounded by a locally convex
boundary). The cardioid has been intensively studied in
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Fig. 5. a) Average of P np(X, ε|T ) over the whole energy shell
of the desymmetrized diamond billiard and fractions of 1

8
and

1
64

thereof (divided by 2P2T2

m|Ω|2 for normalization). b) The same

quantities divided by sin ε
2

in a logarithmic plot. The logarith-
mic correction due to the minimal loop time becomes visible.

the literature, see [27–32] and references therein. It is
hyperbolic, and the fidelity of both symmetry-reduced
spectra to random-matrix theory was demonstrated nu-
merically in [28]. It has symbolic dynamics with two
symbols effectively denoting straight-line segments of the
orbit [29–31]. The initial points of each segment and the
cusp divide the boundary into two parts. A symbol A is
assigned to the segment if, seen from the initial point,
the final one lies in the part on the clockwise side, and a
symbol B if it lies on the counter-clockwise side. We note
that time reversal inverts the ordering of symbols and in-
terchanges A and B. For a more detailed account of the
following results, we refer the reader to [14].

5.1 Crossings without partner

In systems with conjugate points, loops below the mini-
mal loop time derived above are possible, because the two
branches of a loop can meet while the linear approxima-
tion for their separation is still applicable. However, we

Fig. 6. Example for a family of mutually conjugate points in
the cardioid billiard.

Fig. 7. Examples for crossings conjugate to a reflection in the
cardioid billiard.

will see that in this case the orbit has no partner avoiding
the crossing.

Examples for these loops are shown in Figure 7. Here,
a loop starts from the crossing, is reflected with an almost
right angle and nearly retraces itself before crossing itself
with a small angle. The locations of the crossing and the
reflection are almost conjugate to each other, since the two
traversals of the crossing limit a fan of trajectories with a
small opening angle which gathers again at the reflection
point.

These loops are so close to being time-reversal invari-
ant that the “partner” formally determined by time re-
versal of one such loop coincides with the orbit itself. To
show this, we use the notation introduced in Section 2
and let L and R denote the stability matrices of the left
and right loop separated by the crossing (cp. Fig. 1). For
small crossing angles, the partner with time-reversed right
loop has to fulfill the following linear system of equations
(given in different form in [9]) for its traversals x′

1, x′
2 of

a Poincaré section orthogonal to the first traversal of the
crossing5

x′
2 − x2 = L(x′

1 − x1)

x′
1 − T x2 = RT (x′

2 − T x1), (17)

where RT = T R−1T is the stability matrix of the time-
reversed right loop. Note that in contrast to the reasoning
in Section 2, here we do not require the orbit loops to be

5 We might as well consider the slightly more complicated
Poincaré sections we had to choose in Section 2 for technical
reasons.
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long. With δx1 = x′
1−x1, δx2 = x′

2−x2, δx = T x2−x1 =
(0, |P1|ε), (17) simplifies to

δx2 = Lδx1

δx1 − δx = RT (δx2 + T δx). (18)

This system of equations in δx1 and δx2 is valid up to
corrections quadratic in δx, and obviously has exactly one
solution. By going to higher orders, Spehner indeed rigor-
ously showed that there is exactly one “partner orbit” [17].
It is, among all periodic orbits, unambiguously singled out
by fulfilling (18) in linear order. This “partner orbit” does
however coincide with the initial orbit, if the right loop
is smaller than the minimal loop time derived above. In
this case, the separation between the two branches of the
loop can be treated in a linear approximation. During the
traversal time of the right loop x2 is carried into x1, and
T x1 is carried into T x2. Since the separation between T x2

and x1 can be treated in a linear approximation using the
stability matrix of the right loop or its time-reversed, we
obtain (up to quadratic order in δx)

RT T δx = RT (x2 − T x1) = x1 − T x2 = −δx. (19)

Comparing this to the second equation in (18), we see
that (18) has the trivial solution δx1 = δx2 = 0. Thus, the
“partner” with time-reversed right loop coincides with the
initial orbit. Conversely, if the left loop were shorter than
the minimal loop time, that “partner” would coincide with
the time reversal of the initial orbit.

In both cases, as pairs of identical or mutually
time-reversed orbits are already included in the diago-
nal approximation, such crossings related to almost self-
retracing loops give no off-diagonal contribution to the
form factor. We conclude that in systems with conjugate
points, the minimal loop time obtains a new meaning: A
partner orbit avoiding a given crossing exists only if both
loops separated by that crossing exceed the minimal loop
time. In the sequel, we will refer to crossings with an as-
sociated partner orbit as “relevant”, and to the others
as “irrelevant” crossings. The crossing statistics derived
above for systems without conjugate points immediately
carries over to relevant crossings in systems with conju-
gate points. We refer to the Appendix for a discussion of
the statistics of irrelevant crossings.

For systems with symbolic dynamics, the irrelevance of
almost self-retracing orbit loops can be shown even eas-
ier. Each crossing divides the symbol sequence of the or-
bit in two parts L and R corresponding to the two loops6.
The partner can be determined by reverting the symbol
sequence of one loop in time. An orbit with symbol se-
quence LR thus has a partner with symbol sequence LRT ,
where the superscript T denotes time reversal. The two
are identical up to time reversal if one of the symbol se-
quences L or R is time-reversal invariant. This provides a
rigorous criterion to decide whether for a given crossing,
there is an orbit avoiding the crossing or not.

6 For simplicity, we assume here that each loop can unam-
biguously assigned a symbol sequence. Minor technical diffi-
culties arise for symbols which effectively denote the crossing
segments and not parts of a loop; they are dealt with in [14].

5.2 Numerical results

We want to present numerical evidence that the distribu-
tion of relevant crossings in the cardioid indeed conforms
to (15) and (16). We looked for self-crossings in 8 × 106

non-periodic orbits of length L = 250 (which is long com-
pared to the mean free path 1.851 [30] and the Lyapunov
length 2.83); for crossings with angles < π

10 , even 4 × 108

orbits were considered. In order to exclude irrelevant cross-
ings from our statistics, we used the symbolic-dynamics
criterion derived above.

Again, we have to deal with the effect of singularities
on the crossing statistics. In the cardioid billiard, there
are system-specific crossings related to the cusp, which
will be discussed in more detail in the Appendix. Since
for the corresponding orbits, even the applicability of the
Gutzwiller trace formula is questionable, we find it neces-
sary to also distinguish in our numerics between generic
and cusp-related crossings. Like irrelevant crossings, the
latter are excluded from our statistics using a symbolic-
dynamics criterion derived in the Appendix.

Our numerical results for generic relevant crossings dis-
play a striking similarity to the case of the desymmetrized
diamond billiard, thereby clearly supporting our point
that the observed effects are universal. Again, the com-
bined density of crossing angles and loop times7 reveals
a minimal loop time depending logarithmitically on the
angle, and some system-specific inhomogeneities close to
that minimum (cp. Fig. 8). Furthermore, the distribution
of loop times corresponding to crossings in a given energy-
shell bin and with a maximal angle εmax shows a gap for
small angles (see Fig. 9). Finally, the density P np(X, ε|T )
of generic relevant crossings shown in Figure 10 (aver-
aged over the whole energy shell and over fractions of 1

8

and 1
64 thereof) agrees well with (16). Based on the rela-

tive weight of the logarithm we obtain a fitting value for
the Lyapunov exponent of λfit = 0.352 coinciding up to a
minute numerical error with λ = 0.353 8.

5.3 “Braids” of crossings with common partner

In systems with conjugate points, two almost mutually
time-reversed stretches of an orbit cross several times and
thus have a whole family (“braid”) of small-angle cross-
ings located close to mutually conjugate points. This is be-
cause two trajectories starting at the traversals of a given
crossing will meet again in points conjugate to it, thereby
forming new crossings. An example for such a braid of
crossings in the cardioid is shown in Figure 11a.

Interestingly, no matter which of these crossings one
tries to avoid, one always obtains the same partner orbit.

7 In contrast to the following results, for this distribution it
was still sufficient to include 3.5 × 107 trajectories.

8 This value follows from the results of [30] for the
Kolmogorov-Sinai entropy of the billiard map hmap = l̄λ =
0.653 and could be reproduced by averaging over the Lyapunov
exponents of non-periodic orbits.
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Fig. 8. Density plot of the combined density of loop times t and crossing angles ε in the cardioid billiard: a) for ε < 0.05π, b) for
all angles. Normalization as in Figure 3; the resulting scale is shown in c). For small angles, we observe a threshold logarithmic
in ε, as indicated by a dashed line.
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Fig. 9. Statistics of loop times in non-periodic trajectories of traversal time T = 250 in the cardioid billiard. Depicted is the
density of crossings with loop time t and crossing angle < εmax in a fraction of 1

8
of the energy shell for a) εmax = π, b)

εmax = 0.1π, c) εmax = 0.01π, d) εmax = 0.001π. Normalization as in Figure 4; the graphs are based on averages over 8 × 106

orbits for large and 4× 108 orbits for small angles. As in Figure 4, due to the minimal loop time there is a gap for small t which
grows as εmax is reduced.
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Fig. 10. a) Average of P np(X, ε|T ) over the whole energy shell
of the cardioid billiard and fractions of 1

8
and 1

64
thereof (di-

vided by 2P2T2

m|Ω|2 for normalization). b) The same quantities di-

vided by sin ε
2

in a logarithmic plot. The logarithmic correction
due to the minimal loop time becomes visible.

To understand this, consider two crossings close to mutu-
ally conjugate points (cp. Fig. 12). We introduce Poincaré
sections orthogonal to one traversal X1 of the first and
one traversal X̃1 of the second crossing. Furthermore, let
L, R (L̃, R̃) be the stability matrices of the loops sepa-
rated by the first (second) crossing. If M is the stability
matrix describing the motion from X̃1 to X1, we have (in
the notation introduced above)

L̃ = MT LM

R̃ = M−1R(MT )−1

δx̃ = M−1δx. (20)

The partner corresponding to the first crossing inter-
sects the Poincaré section orthogonal to that crossing at
x′

i = xi + δxi, and a linear approximation shows that it
intersects the Poincaré section orthogonal to the second

Fig. 11. a) Example for braid of crossings in mutually con-
jugate points in the cardioid billiard. We depict the central
part of such a braid occurring in a periodic orbit. b) Crossings
in the corresponding partner orbit. The number of crossings
differs exactly by one.

Fig. 12. Sketch of a Sieber-Richter pair with crossings in mu-
tually conjugate points. The arrows denote phase-space points
on the Poincaré sections defined in the text. L, R, L̃, R̃, and
M are stability matrices as described in the text.

crossing at x̃′
i = x̃i + δx̃i with

δx̃1 = M−1δx1

δx̃2 = MT δx2. (21)

It is easy to show that these δx̃i also fulfill the system
of equations determining the partner which corresponds
to the second crossing (i.e. the “tilded” version of (18))9.
Consequently, for each braid of crossings close to mutually
conjugate points and thus for any two approximately time-
reversed stretches of an orbit there is just one partner
orbit.

Again, we would like to point out how these findings
translate to symbolic dynamics. The existence of two al-
most time-reversed stretches of an orbit is naturally re-
flected in its symbol sequence, because the stretches will
have mutually time-reversed symbol sequences Z and ZT .
Thus, small-angle crossings appear in orbits with symbol
sequences of the form lZrZT (where l and r are arbitrary
symbol sequences) and occur between the stretches be-
longing to Z and ZT [19]. In case of conjugate points, there
are several such crossings between these stretches. Any of
them divides Z into two parts Zl and Zr, and the whole
symbol sequence into parts L = Zl

T lZl and R = ZrrZr
T

corresponding to the loops. The partner obtained by time

9 A similar result holds in a phase-space based treatment, as
will be shown in [17].
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reversal of the right loop has the symbol sequence

LRT = Zl
T lZl(ZrrZr

T )T = Zl
T lZlZrr

T Zr
T

= lZrT ZT , (22)

regardless of which crossing was chosen. Here, we used
that time reversal of a symbol sequence inverts the order-
ing of its subsequences and reverts the subsequences in
time, and that symbol sequences related by cyclic permu-
tation are equivalent. Thus, we see again that the orbit
has only one partner for the whole braid.

This partner, too, contains a braid of crossings, as
demonstrated for the example of the cardioid billiard in
Figure 11b. For both orbits within the pair, the crossing
angles increase approximately exponentially towards the
edges of the braids, where the two orbit stretches deviate
more and more from being mutually time-reversed [14].
The crossings of the partner orbit are slightly shifted com-
pared to those in the original orbit (most strongly close to
the center), and the numbers of crossings in both orbits
differ by one, the orbit with larger action containing one
crossing more.

This observation, which will turn out to be crucial
for the derivation of the form factor, will be proved in
the sequel for general hyperbolic Hamiltonians of the
form H(Q,P) = P2

2m + V (Q). Note that it also trivially
applies to systems without conjugate points, where the
partner with larger action contains one crossing and the
other none. Our proof relies on an argument of winding
numbers. We follow one of the two almost time-reversed
stretches of the orbit and study, in a Poincaré section or-
thogonal to the orbit, three quantities, the stable and un-
stable manifolds (which locally have the form of straight
lines through the origin) and the (small!) phase-space
vector δx pointing to the time reversal of the other or-
bit stretch (cp. Fig. 13). As we move along the orbit,
these lines and vectors rotate around the origin. Every
time δx rotates through the p-axis, the orbit has a cross-
ing. Note that for kinetic-plus-potential Hamiltonians the
p-axis may only be traversed in clockwise direction, be-
cause because we have q̇ = p

m > 0 in the upper and < 0
in the lower half plane.

For the orbit with larger action, our formula for the ac-
tion difference demands that whenever a crossing occurs
we have Bu(X)−Bs(X) > 0, i.e. the unstable manifold has
a higher slope in the Poincaré section than the stable one.
Thus for the partner with larger action, δx is located be-
tween the stable manifold (on the counter-clockwise side)
and the unstable manifold (on the clockwise side), and for
the partner with smaller action, the inverse is true. The
motion of δx is given as a superposition of the rotation of
invariant manifolds and a motion from the stable towards
the unstable manifold (since the deviation between the or-
bit stretches first shrinks and then increases). We thus see
that for the orbit with larger action, δx performs one more
clockwise half-rotation around the orbit. Consequently, it
crosses the p-axis once more and therefore the orbit with
larger action contains one more crossing10.
10 This result holds even true in case of hard-wall reflections.
Here, δx does not rotate continuously but jumps, and q changes

Fig. 13. Poincaré section orthogonal to one of two almost
time-reversed orbit stretches with stable and unstable man-
ifold and the vector δx pointing to the time reversal of the
other stretch. Here, δx traverses the p-axis, i.e. the stretches
cross in configuration space. For both Sieber-Richter partners,
the asymptotic motion of δx with respect to the invariant man-
ifolds is indicated by arrows.

6 Leading off-diagonal contribution
to the form factor

Once the crossing statistics and the action difference are
known, we can now determine the contribution to the form
factor arising from Sieber’s and Richter’s family of orbit
pairs. It follows from (2) that each pair of orbits of period
T = τTH gives a contribution of 2A2

γ cos ∆S
�

to the form
factor (where we neglect the difference in amplitude and
period between the two partners). However, we have to
make sure that in spite of the one-to-one correspondence
between crossings and orbit pairs being lost in general
systems, each pair of orbits is counted only once. The key
to the solution is to formally assign to each crossing a
contribution of 2A2

γ cos ∆S
�

sign(Bu(X)−Bs(X)). Since the
partner with larger action and thus Bu(X) − Bs(X) > 0
contains one more crossing that the partner with Bu(X)−
Bs(X) < 0, these formal contributions of all crossings in
both partners add up to the correct value for the pair. We
can thus sum over all Sieber-Richter pairs by summing
over all orbits with period T = τTH and integrating over
the locations X of the crossings on the energy shell Ω and
over their angles ε

K2(τ) =
2

TH

〈∑
γ

A2
γδ(T − Tγ)

×
∫

Ω

d3Xsign(Bu(X) − Bs(X))

×
∫ π

0

dε P (X, ε|T ) cos
∆S(X, ε)

�

〉
E,T

· (23)

Note that each crossing is counted twice, since it is tra-
versed at two mutually time-reversed phase-space points.

sign without traversal of the p-axis. However, as the two part-
ners undergo the same number of hard-wall reflections, this
does not affect the difference in numbers of crossings.
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As there are also two partner orbits with time-reversed
left or right loop, no additional factor appears here. The
integral over the angle can be performed in a way sim-
ilar to [9] using (9), (12) and (14) and yields in the
semiclassical limit −τ |Bu(X)−Bs(X)|

2mλ|Ω| . This value only de-
pends on the asymptotic action difference and angle dis-
tribution for ε → 0. Interestingly, the contribution of
the ergodic approximation of the angle distribution van-
ishes, and the result is only due to its logarithmic cor-
rection originating from the minimal loop time. Apply-
ing the sum rule of Hannay and Ozorio de Almeida [33]
〈
∑

γ A2
γδ(T − Tγ)〉T = T , we are led to

K2(τ) = −2τ2 〈Bu − Bs〉
2mλ

, (24)

where 〈. . .〉 denotes an average over the energy shell.
Now, ergodic theory comes into play, relating the in-

variant manifolds to the Lyapunov exponent. The (posi-
tive) Lyapunov exponent of a hyperbolic two-freedom sys-
tem can be expressed as the energy-shell average of the
so-called local stretching rate [20]

χ(X) = tr
[

∂2H

∂Q∂P
+

∂2H

∂2P
Cu(X)

]
· (25)

Here, Cu(X) is a matrix which relates the momentum
and configuration-space components of unstable devia-
tions by dP = Cu(X)dQ. For systems with Hamiltonian
H(Q,P) = P2

2m + V (Q), this local stretching rate is pro-
portional to Bu(X). Evaluating the trace in coordinates
orthogonal and parallel to the orbit, we see that χ(X) =
1
m tr Cu(X) = 1

m Bu(X). Thus, we infer that 〈Bu〉 = mλ.
Proofs for the special case of semi-dispersing billiards can
also be found in [34]. Due to Bs(T X) = −Bu(X), we also
have 〈Bs〉 = −〈Bu〉 = −mλ. From this, we immediately
obtain the universal leading off-diagonal contribution to
the spectral form factor

K2(τ) = −2τ2. (26)
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Appendix: More about crossings
in the cardioid billiard

A.1 Crossings in reflection-conjugate points

It is instructive to see how the statistics of angles, loca-
tions and loop times of irrelevant crossings in “reflection-
conjugate” points (i.e. points conjugate to the location
of a self-retracing reflection) compares to the statistics of
relevant crossings. We again consider the cardioid, where

the distinction between these classes of crossings can be
made with the help of symbolic dynamics.

Numerically, we observe that the density of angles be-
longing to irrelevant crossings reaches a constant value for
ε → 0 (see Fig. 14a), while for relevant crossings the cor-
responding density was shown to be proportional to sin ε
up to a logarithmic correction. Thus, we see that in fact
the vast majority of small-angle crossings are irrelevant.

In configuration space, irrelevant crossings are concen-
trated in the immediate vicinity of certain curves, the loci
of reflection-conjugate points (see 14b). One can construct
these curves by traveling along the boundary, starting tra-
jectories in a direction perpendicular to the boundary, and
determining points conjugate to these starting points us-
ing simple geometric optics. One such curve (sometimes
divided into several parts) exists for the first, second, etc.
conjugate points met after the starting point.

For each of these loci, the length (and thus time) of
the trajectory from the boundary point to the crossings
(corresponding to half of the length of the self-retracing
loop) has several local maxima as shown in Figure 14c. A
short calculation shows that these maxima are responsible
for peaks in the loop time distribution which decay sharply
towards larger and smoothly towards shorter time [14] (see
Fig. 14d).

A.2 Cusp-related crossings

In this Appendix, we want to show that in the cardioid
billiard, the minimal loop time is ignored by a system-
specific class of crossings related to the singularity at the
cusp. We will argue that for the evaluation of the form
factor, these crossings have to be disregarded as well.

An example for these crossings is shown in Figure 15.
For one of the two loops separated by the crossing, the
two branches stay very near until being reflected on oppo-
site sides of the cusp. Thus, the linear approximation for
the separation between these branches breaks down before
their separation reaches a typical phase-space scale. Then,
in many cases, the loop closes by going around the bound-
ary like in a whispering gallery. The length (and thus time)
of the shortest such loops is approximately given by the
circumference of the billiard. In fact, they can be seen as
deformations of finite orbits starting and ending at the
cusp as introduced in [29,30]. In spite of their short time,
the crossing angle can be arbitrarily small. So for these
special loops, there is no minimal time depending loga-
rithmitically on the angle.

However, they do give rise to pairs of orbits with simi-
lar action, as their symbol sequences are not time-reversal
invariant. Nevertheless, we have to disregard these cross-
ings for a semiclassical evaluation of the form factor, as
even the validity of the Gutzwiller formula for orbits com-
ing so close to the cusp is questionable. In general, each
time a periodic orbit comes closer to the boundary of a bil-
liard than some length scale of the order of Planck length,
so-called penumbra corrections to the trace formula play
an important role, as shown in [35] for dispersing bil-
liards. The breakdown of the trace formula for families
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Fig. 14. Statistics of irrelevant crossings with almost self-retracing loops in the cardioid billiard. a) Density of angles ε cor-

responding to irrelevant crossings in non-periodic orbits of traversal time T = 250 (divided by 2P2T2

m|Ω| ). b) Distribution in

configuration space. A random sample of irrelevant crossings found numerically is marked by crosses. They cluster close to
the loci of reflection-conjugate points. The locus of the first (second) conjugate point met after each self-retracing reflection is
marked by a solid (dashed) curve. c) Traversal times of the self-retracing loops, parametrized by the arc length of the reflection
point on the boundary. Again, the different curves refer to the first, second, etc. conjugate point met after the reflection point.
d) Density of loop times for loops with crossing angle < π

10
.

Fig. 15. An example for a cusp-related loop and its symbol
sequence. The loop here has a symbol sequence of the form
SATBAST (with S = B and T = B6). Similar loops following
the patterns SBTABST , SABTAST , and SBATBST are obtained
by time reversal and reflection at the symmetry line.

of orbits approaching the cusp of the cardioid is discussed
in [29,32].

Due to these problems, we have to distinguish in our
numerics between generic and cusp-related crossings. This
distinction is done based on symbolic dynamics (compare
Fig. 15). The loop parts preceding the cusp are almost
time-reversed with respect to each other and thus have
symbol sequences S and ST . In contrast, the part following
the cusp is almost symmetric with respect to the symme-
try line of the cardioid, i.e. its symbol sequence T has to
be invariant under inverting the ordering of symbols [30].

Usually, it undergoes a series of subsequent either clock-
wise or counter-clockwise reflections at the boundary, i.e.
T just consists of several identical symbols A or B. In ad-
dition, for the symbols between S, T and ST one has to
take into account the effect of one branch being reflected
close to the cusp and the other one narrowly avoiding it.
These symbols can be read off from the example shown
in Figure 15. Thus, we see that cusp-related crossings
have symbol sequences of the form SATBAST , SBTABST ,
SABTAST , and SBATBST , where S is arbitrary and T in-
variant under inverting the ordering of symbols.
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